
Introduction to Embedded Systems (IES)

Module 2
Microcontroller programming

Version 2022-12-05, Kjeld Jensen kjen@sdu.dk

This module focuses on exploring the Arduino
programming language and testing Arduino
programming examples on the Raspberry Pi Pico
microcontroller. You will learn about program
structure, functions, variables, loops, control
statements, serial communication etc.

Agenda
1.Review of module 1
2.Feedback on submitted reports
3.Microcontroller programming exercises

A) Arduino program structure
B) Functions
C) Variables
D) Loops
E) Control statements and conditions
F) Serial communication
G) Arduino examples

A) Arduino program structure

The Arduino programming language is a subset of
C/C++, with additional functionalities related to the
microcontroller hardware.

An Arduino program is also called an Arduino sketch.

The Arduino sketch file must be named .ino and
must be in a folder with the same name as the file
name: if you have a sketch file named
hello_world.ino it must be in a folder named
hello_world

Program lines are terminated using a semicolon ;

In a program line any text written after // is ignored by
the Arduino compiler. This is often used for
comments.

Question A.1) Please explain what is the difference
between setup() and loop() in an Arduino
program?

void setup() {
}

void loop() {
}

B) Functions
A function is a block of source code that only runs
when it is called.

In Arduino programs the setup() and loop() are
functions.

Above this text is the hello_world program from
module 1.

Exercise B.1) Please modify hello_world to use
functions for turning on and off the LED like in this
example:

void setup() {
 // Setup the LED port
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
 // Blink the LED once
 digitalWrite(LED_BUILTIN, HIGH);
 delay(500);
 digitalWrite(LED_BUILTIN, LOW);
 delay(500);
}

Exercise B.2) Please modify hello_world to use a
new function wait_time() to run the delay
command. Your loop()function should then look
like this example:

void setup() {
 // Setup the LED port
 pinMode(LED_BUILTIN, OUTPUT);
}

void turn_led_on() {
 // this function turns the LED on
 digitalWrite(LED_BUILTIN, HIGH);
}

void turn_led_off() {
 // this function turns the LED off
 digitalWrite(LED_BUILTIN, LOW);
}

void loop() {
 // Blink the LED once
 turn_led_on();
 delay(500);
 turn_led_off();
 delay(500);
}

void loop() {
 // Blink the LED once
 turn_led_on();
 wait_time();
 turn_led_off();
 wait_time();
}

C) Variables
A variable is a container for storing data values such
as a number or a text string. The variable content can
be changed while the program is running.

Below is a list of common variable types. You will see
that there are several different types for storing
numbers depending on the minimum and maximum
values and if it contains decimal numbers or not.

Variables can be global or local. A global variable is
available to the entire program. A local variable is
only available inside a function.

A variable must be declared before it can be used.

Type Content
char -127 to 128
unsigned char 0 to 255
byte Same as unsigned char
int -32,768 to 32,767
unsigned int 0 to 65,535
long -2,147,483,648 to 2,147,483,647
unsigned long 0 to 4,294,967,295
float Decimal number
double Decimal number
bool true / false
boolean Same as bool
String Text

Exercise C.1) Please modify hello_world to use a
variable for the LED delay like in this example:

// declare the variable led_delay
int led_delay = 500;

void setup() {
 // Setup the LED port
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
 // Blink the LED once
 digitalWrite(LED_BUILTIN, HIGH);
 delay(led_delay);
 digitalWrite(LED_BUILTIN, LOW);
 delay(led_delay);
}

D) Loops
A loop is used to execute a group of instructions or a
block of code multiple times.

An example is the for loop:

statement1 is executed before looping
statement2 defines the condition for executing
statement3 is executeed after the code block at
each loop

for (statement1; statement2; statement3) {
}

Exercise D.1) Please modify hello_world to use a
loop for blinking 10 times after startup like in this
example:

void setup() {
 // Setup the LED port
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
 // declare a local variable i
 int i;

 // Blink the LED 10 times
 for (i=0; i<10; i=i+1)
 {
 digitalWrite(LED_BUILTIN, HIGH);
 delay(500);
 digitalWrite(LED_BUILTIN, LOW);
 delay(500);
 }

 // wait 5 seconds
 delay (5000);
}

E) Control statements and conditions
A control statement is used to specify a block of code
that is executed if a condition is met.

An example is the if statement:

Exercise E.1) Please modify hello_world to only
blink when the BOOTSEL button is pressed like in
this example:

if (condition) {
 // block that is executed if condition is true
}

void setup() {
 // Setup the LED port
 pinMode(LED_BUILTIN, OUTPUT);
}

void loop() {
 // test if BOOTSEL button is pressed
 if (BOOTSEL == true)
 {
 // Blink the LED once
 digitalWrite(LED_BUILTIN, HIGH);
 delay(500);
 digitalWrite(LED_BUILTIN, LOW);
 delay(500);
 }
}

F) Serial communication
Serial communication between the Raspberry Pi Pico
and your computer is a very efficient way to transmit
data

Exercise F.1) Please create the program from the
example below. Then modify the example to only
send data to the serial port, when the BOOTSEL
button is pressed.

void setup() {
 // Setup the serial device
 Serial.begin(115200);
}

void loop() {
 // Print text to the serial port
 Serial.println("Exercise F.1");
 delay (1000);
}

G) Arduino examples
The Arduino programming software includes many
examples of programs.

You can find the list of examples under the File ->
Examples menu. At the bottom of the list of
examples you will find some examples that are
specifically for the Raspberry Pi Pico microcontroller,
but almost all of the built-in examples will work as
well.

Exercise G.1) Please test some of the examples, and
please where applicable use the knowledge from this
module to modify the examples.

	This module focuses on exploring the Arduino programming language and testing Arduino programming examples on the Raspberry Pi Pico microcontroller. You will learn about program structure, functions, variables, loops, control statements, serial communication etc.
	Agenda

