
Introduction to Embedded Systems (IES)

Module 3
Interfacing to sensors

Version 2022-12-19, Kjeld Jensen kjen@sdu.dk

In this module we will interface sensors to the
Raspberry Pi Pico microcontroller and explore how to
read data from the sensors using the Arduino
programming language. We will begin with examples
of digital sensors and then continue with examples of
analog sensors.

Agenda
1.Review of module 2
2.Feedback on submitted reports
3.Interfacing to sensors exercises

A) Breadboard
B) Push button (digital input)
C) Water level sensor (digital input)
D) Potentiometer (analog input)
E) Computer mouse (analog input)

A) Breadboard
To connect sensors an other electronics to the Pico we
use the breadboard that the Pico is mounted on.

The orange lines on the picture below shows how the
pinholes are connected. These connections facilitate
building up the experimental circuits using test wires.

Connections between breadboard pinholes

Test wires used to build circuits

Please notice that this information is also available in
the file ies_kit.pdf

B) Push button (digital input)
In this exercise we will connect a push button to the
Pico as a digital input sensor and then in the Arduino
sketch read the status of the push button.

To read the push button as a digital input on the Pico
we must make it switch between logic high (3.3V) and
logic low (0V).

We do this by adding a pull-up resistor in series with
the push button like the circuit above:

• When the button is open, Digital input will be
logic high because the pull-up resistor is
connected to 3.3V.

• When the button is pushed, the digital input will
become logic low because of the direct connection
between Digital input and 0V

Please notice that 0V is often called Ground, GND or
G.

Exercise B.1) Please connect the push button to pin
15 on the Pico using the breadboard.

Please notice that the Pico has a built-in pull-up (50k
Ohm) resistor that can be enabled, so you do not have
to add this to the breadboard.

When completed it should look like this.

Exercise B.2) Please use the example program below
to read data from the push button. A copy is available
as read_digital_input.ino in the examples
folder.

Question B.3) What happens when you push the
button? Please explain in your own words, why this
happens.

void setup() {
 // Setup Pins
 pinMode(LED_BUILTIN, OUTPUT);
 pinMode(15, INPUT_PULLUP);
}

void loop() {
 // Read Pin 15
 bool logic_high = digitalRead(15);
 if (logic_high == true) {
 // Turn off LED
 digitalWrite(LED_BUILTIN, LOW);
 } else {
 // Turn on LED
 digitalWrite(LED_BUILTIN, HIGH);
 }
}

C) Water level sensor (digital input)
In this exercise we will remove the push button and
instead make a water level sensor.

This is very simple as the water is conductive like a
pushed button, though with a much higher resistance.

Exercise C.1) Please replace the push button by a
glass of water like below and verify that the LED
lights up if there is water between the wires or not.

Question C.2) If the water is very clean you may
have to submerge both wires about 2 cm, i.e. not only
the tip for the LED to light up. Why is this?

An example of where to use a water level sensor is for
measuring the water level in a borehole.

Some commercial sensors are based on this principle.
Please look at the product below which you lower into
the borehole and read the length from ground level to
the tip down in the borehole using the scale.

Notice how the meter scale has a red and a white wire
on the side. It uses the same principle to detect when
the tip is below water level.

Image source: weqiequipment.com

D) Potentiometer (analog input)
In this exercise we will connect a potentiomenter to
the Pico as an analog input sensor and then in the
Arduino sketch read the potentiometer position.

Please notice that for the Pico only the pins 26,27,28
can be used as analog inputs. In the course kit
documentation you can find an overview of the Pico
pins.

To read the potentiometer using an analog input on the
Pico we must make a voltage divider between 3.3V
and 0V as shown below.

Instead of using the two resistors R1 and R2 we use a
potentiometer where we by turning the potentiometer
can vary R1 and R2.

Exercise D.1) Please connect the potentiometer to pin
26 on the Pico using the breadboard.

Exercise D.2) Please use the example program below
to read data from the push button. A copy is available
as read_analog_input.ino in the examples
folder.
void setup() {
 // Setup serial port
 Serial.begin(115200);
}

void loop() {
 // Read Pin 26 (analog input A0)
 int value = analogRead(26);

 // Print the value to the serial port
 Serial.println(value);

 // Wait one second
 delay(1000);
}

When you have uploaded the example program to the
Pico, you have to open the Serial Montior
(magnifying glass icon to the upper right of the
Arduino Programming Software).

Question D.3) What are the minimum and maximum
values that you see in the Serial Monitor when you
turn the potentiometer knob?

Please explain in your own words what happens when
you turn the potentiometer knob?

E) Computer mouse (analog input)
In this exercise we will use the potentiometer to create
a computer mouse simulator.

We will use the circuit from exercise D with no
changes.

Exercise E.1) Please use the example program below
to simulate the movement of a computer mouse. A
copy is available as mouse_move.ino in the
examples folder.

Question E.2) Please explain in your own words what
happens when you turn the potentiometer knob and
press the BOOTSEL button?

// Import mouse driver
#include <Mouse.h>

void setup() {
 // Start mouse driver
 Mouse.begin();
}

void loop() {
 // If BOOTSEL button is pressed
 if (BOOTSEL) {
 // Read Pin 26 (analog input A0)
 int dx = analogRead(26);

 // Subtract half max value 1023
 dx = dx - 512;

 // Keep value within char limits
 dx = dx/4;

 // Move the mouse dx pixels
 Mouse.move(dx, 0, 0);

 // Wait until BOOTSEL button is released
 while (BOOTSEL) {
 delay(1);
 }
 }
}

	In this module we will interface sensors to the Raspberry Pi Pico microcontroller and explore how to read data from the sensors using the Arduino programming language. We will begin with examples of digital sensors and then continue with examples of analog sensors.
	Agenda

