Introduction to Embedded Systems (IES)

Module 4 Interfacing to actuators Version 2023-01-23, Kjeld Jensen kjen@sdu.dk

In this module we will interface actuators to the Raspberry Pi Pico microcontroller and explore how to control these using the Arduino programming language. We will use LEDs, a Piezo horn and a servo motor as examples.

Agenda

- 1. Review of module 3
- 2. Interfacing to actuators exercises
 - A) Single LED
 - B) Multiple LEDs
 - C) RGB LED
 - D) Piezo horn
 - E) Servo motor

A) Single LED

In this exercise we will connect an external LED to the Pico and control this using the Arduino sketch example digital_output.ino

Exercise A.1) Please connect the LED to pin 15 on the Pico using the breadboard using this circuit:

Please remember that the **shortest** pin of the LED is the **negative** pin which must be connected to the Ground **G** pin.

Also please remember to add a 470 Ohm resistor in series with the LED to limit the current.

The 470 Ohm resistor has the color code:

yellow - violet - brown - gold

Here is an example of how the breadboard will look:

Exercise A.2) Please use the example program below to make the LED blink. A copy is available as digital output.ino in the examples folder.

```
#define PIN_DIGI_OUT1 15
void setup() {
    // setup the PIN_DIGI_OUT1 as digital output
    pinMode(PIN_DIGI_OUT1, OUTPUT);
}
void loop() {
    // toggle the PIN_DIGI_OUT1 once
    digitalWrite(PIN_DIGI_OUT1, LOW);
    delay(500);
    digitalWrite(PIN_DIGI_OUT1, HIGH);
    // wait 2 seconds
    delay(2000);
}
```

B) Multiple LEDs

In this exercise we will add a second external LED to the Pico and add control of this to the Arduino sketch digital_output.ino

Exercise B.1) Please connect a second LED to pin 14 on the Pico using the breadboard using this circuit:

Exercise B.2) Please modify the example program from Exercise A.2 to make both LEDs blink.

C) RGB LED

In this exercise we will connect an RGB LED to the Pico and control this using the Arduino sketch example digital output.ino to control this.

Exercise C.1) Please connect the RGB LED to pin 13, 14 and 15 on the Pico using the breadboard using this circuit:

Please remember that the **longest** pin on the RGB LED is the **negative** pin that must be connected to Ground **G**. The three other positive pins produce red, green and blue light. Also please remember to add a 470 Ohm resistor in series with each of the positive pins of the RGB LED to limit the current.

Exercise C.2) Please modify the example program digital_output.ino from Exercise A.2 to make all three colors of the RGB LED blink.

D) Piezo horn

In this exercise we will connect a piezo horn to the Pico and control this using the Arduino sketch example piezo_control.ino

Exercise D.1) Please connect the piezo horn to pin 15 on the Pico using the breadboard using this circuit:

Please remember to add a 470 Ohm resistor in series with the piezo buzzer to limit the current.

Exercise D.2) Please use the example program below to make the piezo buzzer sound. A copy is available as piezo_control.ino in the examples folder.

```
#define PIN PIEZO 15
void beep(unsigned char ms) {
  // turn on the piezo buzzer, almost any value
between 1 and 254 can be used
  analogWrite(PIN PIEZO, 100);
  // wait ms milliseconds
  delay(ms);
  // turn off the piezo buzzer
  analogWrite (PIN PIEZO, 0);
  // wait ms milliseconds
  delay(ms);
}
void setup() {
  // setup the PIN PIEZO as output
  pinMode(PIN PIEZO, OUTPUT);
}
void loop() {
 beep(200);
 beep(100);
}
```

E) Servo motor

In this exercise we will connect a servo motor to the Pico and control this using the Arduino sketch example servo_control.ino

Exercise E.1) Please connect the servo motor to pin 15 on the Pico using the breadboard using this circuit:

Please remember to add a 470 Ohm resistor in series with the servo digital input pin to limit the current.

Exercise E.2) Please use the example program below to make the servo move. A copy is available as servo control.ino in the examples folder.

```
#include <Servo.h>
#define PIN SERVO 15
// create a servo object
Servo myservo;
void setup() {
  // attach PIN SERVO to the servo object
 myservo.attach(PIN SERVO);
}
void loop() {
  int i;
  // turn the servo clock wise
  for (i=0; i<=180; i+=1) {
   myservo.write(i);
   delay(10);
  }
  // wait a second
  delay (1000);
  // turn the servo counter clock wise
  for (i=180; i>=0; i-=1) {
   myservo.write(i);
   delay(10);
  }
  // wait a second
  delay (1000);
```