
Introduction to Embedded Systems (IES)

Module 5
Practical use cases

Version 2023-02-13, Kjeld Jensen kjen@sdu.dk

In this module we will use the learning about
embedded systems from the previous modules to
solve real-world practical use cases. We will work
with cases concerning water tower pump control,
automatic street lights and a refrigerated medicine
temperature alarm.

Agenda
1.Notes

a) Final report assignment and Questionary will
be sent to on WatchApp later this week

2.Review of module 4
3.Use cases

1) Water tower pump control
2) Automatic street lights
3) Refrigerated medicine temperature alarm

A) Water tower pump control
The image below (from Gandorhun) shows a typical
water tower providing water to a community.

In many cases the pump caretaker daily turns on the
pump when needed, and turns it back off, when the
water is seen running out from the top of the tank.
This can also be automatized using an embedded
system.

In module 3 we created a simple water sensor that
gave a digital low signal when there is water available
and a digital high signal when there is no water.

Imagine that we put this sensor at the top of the water
tower tank i.e. place the two wires just below the tank
top opening. This would allow us to measure if the
tank is full or not. If we can control the pump by a
digital output, we would then be able to automatize
the pumping process like illustrated in the sketch
below. The solar cell panels supplying power to the
pump control and the pump have been removed for
simplicity.

In our course kit we obviously don’t have a water
pump or a pump controller. For simulating the water
pump we will thus use an external LED. We will use

the same circuit as in exercise 4.A and the same
arduino example program digital_output.ino
to control it.

Exercise A.1) Please connect the water sensor wire to
pin 16 on the Pico and the LED to pin 15 on the Pico
using this circuit:

Hint: You don’t need a glass of water for for this
module, just short the two wires to simulate that water
has been sensed.

Please remember that the shortest pin of the LED is
the negative pin which must be connected to the
Ground G pin. Please also remember to add a 470
Ohm resistor in series with the LED to limit the
current.

The 470 Ohm resistor has the color code:

yellow - violet - brown - gold

Here is an example of how the breadboard will look:

Exercise A.2) Please test that the LED works by
testing it with the digital_output.ino
program available in the examples folder.

Exercise A.3) Please test you are able to read the
digital value of the water sensor by testing it with the
read_digital_input.ino
program available in the examples folder. Remember
to change the input pin number.

#define PIN_DIGITAL_IN 15

void setup() {
 // Setup Pins
 pinMode(LED_BUILTIN, OUTPUT);
 pinMode(PIN_DIGITAL_IN, INPUT_PULLUP);
}

void loop() {
 // Read pin high/low state
 bool logic_high =
digitalRead(PIN_DIGITAL_IN);

 if (logic_high == true) {
 // Turn off LED
 digitalWrite(LED_BUILTIN, LOW);
 } else {
 // Turn on LED
 digitalWrite(LED_BUILTIN, HIGH);
 }
}

Exercise A.4) Based on the two example programs
from exercises A.2 and A.3 please write a program
that automatically turns off the pump (the external
LED) when the tank is full (water is detected) and
turns on the pump (LED) when the tank needs to be
filled (no water is detected).

Hint: You can use the if statement to control the
pump (LED) by following this example:

When done please post a video of your working
embedded system on WhatsApp.

 if (digitalRead(PIN_DIGITAL_IN) == HIGH) {
 // turn off the pump
 } else {
 // turn on the pump
 }

B) Automatic street lights
Streets with no street lights at night are often a
problem in terms of both safety and security. Putting
up street lights is expensive, however, due to the
power consumption.

In this exercise we will create an ambedded system
that automatically turns on a street light when it is
dark.

Building upon this exercise it would be possible to
turn on the street light only when desired in order to
save power. This could for instance be a few hours
after sunset and a few hours before sunrise.

In our course kit we obviously don’t have a street
light, so like in exercise A we will thus use the
external LED to simulate the street light.

For sensing the light we will use the photoresistor
(LDR) which is a light sensitive resistor whose
resistance decreases as the intensity of light it is
exposed to increases.

The photoresistor acts like the potentiometer in
module 3 exercise D and we will use the same voltage
divider circuit and the same arduino example program
read_analog_input.ino to read it.

Exercise B.1) Please connect the phototransistor to
pin 26 on the Pico and the LED to pin 15 on the Pico
using this circuit:

The 1 kOhm resistor has the color code:

brown - black - red - gold

Here is an example of how the breadboard will look:

Exercise B.2) Please test that the LED works by
testing it with the digital_output.ino
program available in the examples folder.

#define PIN_DIGITAL_OUT 15

void setup() {

 // setup the PIN_DIGITAL_OUT as digital
output
 pinMode(PIN_DIGITAL_OUT, OUTPUT);
}

void loop() {

 // toggle the PIN_DIGITAL_OUT once
 digitalWrite(PIN_DIGITAL_OUT, LOW);
 delay(500);
 digitalWrite(PIN_DIGITAL_OUT, HIGH);

 // wait 2 seconds
 delay(2000);
}

Exercise B.3) Please test you are able to read the
analog value of the photoresistor by testing it with the
read_analog_input.ino
program available in the examples folder.

Please remember from the exercise in module 3 that
when you have uploaded the example program to the
Pico, you have to open the Serial Montior
(magnifying glass icon to the upper right of the
Arduino Programming Software).

You should be able to observe that the value decreases
when you put your finger in front of the
phototransistor and thus shades the light. Conversely

#define PIN_ANALOG_IN 26

void setup() {
 // Setup serial port
 Serial.begin(115200);
}

void loop() {
 // Read analog input pin
 int value = analogRead(PIN_ANALOG_IN);

 // Print the value to the serial port
 Serial.println(value);

 // Wait one second
 delay(1000);
}

the value should increase when you expose the
phototransistor to light.

Exercise B.4) Based on those two example programs
please write a program that automatically turns on the
LED when you put your finger in front of the
phototransistor, and turns it off when you remove it.

Hint: You can use the if statement to control the LED
by following this example. Please notice that you will
probably have to adjust the value 250 according to
your readings:

When done please post a video of your working
embedded system on WhatsApp.

 if (value > 250) {
 // turn off the light
 } else {
 // turn on the light
 }

C) Refrigerated medicine temperature alarm
A range of medicines such as insuline, antibiotic etc.
need to be refrigerated. If the refrigerator1 looses
power or breaks, the medicine will quickly become
useless.

In this exercise we will create an alarm system that
sounds if the temperature of the refrigerator rises
above an acceptable temperature.

Exercise C.1) Please test that you can read the
temperature of the RP2040 processor on the Pico
board like we did in module 1 using the
read_temperature.ino program available in
the examples folder.

1 Image source: https://www.cleanpng.com/png-vaccine-refrigerator-cold-chain-pharmaceutical-
dru-659219/

Please remember that when you have uploaded the
example program to the Pico, you have to open the
Serial Montior (magnifying glass icon to the upper
right of the Arduino Programming Software).

When you see the temperature, gently press your
finger against the RP2040 chip on the Pico board. You
should see that the temperature increases because your
finger is warming it up.

When you are able to read the temperature, it is time
to create the alarm circuit.

void setup() {
 Serial.begin(115200);
 delay(2000);
}

void loop() {
 double temperature;

 // read the temperature in degrees Celcius
 temperature = analogReadTemp();

 // print the temperature to the serial port
 Serial.printf("Pico core temperature is:
%2.1fC\n", temperature);

 // wait one second
 delay(1000);
}

Exercise C.2) Please connect the piezo horn to pin 15
on the Pico like in module 4 exercise D. Please
remember to add a 470 Ohm resistor in series with the
piezo buzzer to limit the current.

The 470 Ohm resistor has the color code:

yellow - violet - brown - gold

Exercise C.3) Please test that you can use the
example program from module 4 exercise D to make a
piezo buzzer sound. A copy is available as
piezo_control.ino in the examples folder.

#define PIN_PIEZO 15

void beep(unsigned char ms){

 // turn on the piezo buzzer, almost any value
between 1 and 254 can be used
 analogWrite(PIN_PIEZO, 100);

 // wait ms milliseconds
 delay(ms);

 // turn off the piezo buzzer
 analogWrite (PIN_PIEZO, 0);

 // wait ms milliseconds
 delay(ms);
}

void setup() {

 // setup the PIN_PIEZO as output
 pinMode(PIN_PIEZO, OUTPUT);
}

void loop() {
 beep(200);
 beep(100);
}

Exercise C.4) Based on those two example programs
please write a program that automatically sounds an
alarm when the temperature rises above a defined
threshold.

For a refrigerator the threshold would probably be
about 8 degrees Celcius, however for this exercise you
can select a threshold that is two degrees above the
room temperature where you are. Then you can easily
reach the threshold by pressing your finger gently
against the RP2040 processor.

Hint: You can use the if statement to control the LED
by following this example:

When done please post a video of your working
embedded system on WhatsApp.

 if (temperature > threshold) {
 // sound the piezo horn
 } else {
 // no sound
 }

#define PIN_DIGITAL_OUT 15

void setup() {

 // setup the PIN_DIGITAL_OUT as digital
output
 pinMode(PIN_DIGITAL_OUT, OUTPUT);
}

void loop() {

 // toggle the PIN_DIGITAL_OUT once
 digitalWrite(PIN_DIGITAL_OUT, LOW);
 delay(500);
 digitalWrite(PIN_DIGITAL_OUT, HIGH);

 // wait 2 seconds
 delay(2000);
}

	In this module we will use the learning about embedded systems from the previous modules to solve real-world practical use cases. We will work with cases concerning water tower pump control, automatic street lights and a refrigerated medicine temperature alarm.
	Agenda

